Product Research

sdmay25-32

Ryan Lowe, Daniel Zaucha, Yi Hang Ang, Jonah Upah

Project Overview

MicroCART: Microprocessor Controlled Aerial Robotics Team

- Design mini quadcopter platform to be used in CPRE 488 and for Controls & Embedded Systems researchers
- Develop mini quadcopter printed circuit board (PCB), containing a Microcontroller,
 RF, IMU, and Wi-fi chip
- Develop software to stabilize and communicate
- Develop basestation to communicate with quadcopter
- Create documentation and video tutorials for future teams

Problem Statement

Design a compact, user-friendly quadcopter platform with integrated hardware and software to be used for hands-on learning in CPRE 488.

Ensure both remote accessibility and usability for future users through documentation and tutorials

Related Products

DJJ Mini 4 Pro Drone

- Lightweight, under 250g (with normal battery)
- Expensive (\$1000+)
- Omnidirectional vision sensor arrays
 - Safe for beginners to fly
- Batteries are short range, extras are expensive

Related Products

Kopis Freestyle FPV Drone

- Powerful flight controller
 - ➤ 6 UARTs
- First Person View Camera
 - Sticks out of frame slightly
- Short flight time
 - > 5 to 6 minutes
- Buzzer to help locate when crashed

Related Products Current CPRE 488 Drone

- Highly customizable for student learning
- Testing rigs to help test rig in a safe manner
- Labs in CPRE 488 based on this drone
- Lots of latency with communication
 between base-station and quadcopter

Market Gap

- Sufficient battery life
 - Due to a limited size, the potential life of the battery is also limited
- Drone is able to be manipulated for its user (Code-wise)
- Ability to communicate between quadcopter and base-station with low latency to prevent crashes

New Ideas

- Use sensors to detect when drone is near obstacles while flying.
 - Slow drone down when near obstacles/ground to prevent crashes
- Look into how battery is being used and optimize to have longer flight times on a full charge
- Design drone with secured parts with established parameters and make a program to compensate for any uncentered weight
 - Use sensors to record tilt when not moving

Conclusions

- Several of the similar products we found had battery life issues.
 - > Will work to see if we can remedy this issue
- Our drone needs to be customizable for our users (CPRE 488 students) to work with for their labs
- Need to ensure safety for the drone when flying
 - Sensors to detect obstacles / ground
 - Lower latency between base station and quadcopter

Works Cited

- Oscar. "Review: Holybro Kopis Freestyle 4-Inch FPV Drone." Oscar Liang, 27 July 2021, oscarliang.com/holybro-kopis-freestyle-4-inch/.
- Nast, Condé. "The DJI Mini 4 pro Is a Small Drone with Huge Appeal." WIRED, 23 Mar. 2024,
 www.wired.com/review/dji-mini-4-drone/.
- Okalachev. "Open source ESP32-based quadcopter made from scratch." Project Hub ,6 Jan. 2024,
 https://projecthub.arduino.cc/okalachev/flix-58fe43
- Jones. "CprE 488 Embedded Systems Design." Iowa State University,
 https://class.ece.iastate.edu/cpre488/schedule.asp